Winding-Locked Carbon Nanotubes/Polymer Nanofibers Helical Yarn for Ultrastretchable Conductor and Strain Sensor

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon nanotube yarn strain sensors.

Carbon nanotube (CNT) based sensors are often fabricated by dispersing CNTs into different types of polymer. In this paper, a prototype carbon nanotube (CNT) yarn strain sensor with excellent repeatability and stability for in situ structural health monitoring was developed. The CNT yarn was spun directly from CNT arrays, and its electrical resistance increased linearly with tensile strain, mak...

متن کامل

Yarn Tension along Cone Winding using a Controlling Loop

The aim of this research is to design a controlling loop that eliminates the irregularities in yarn tension during the winding process. In order to achieve this, we employed a relative feedback industrial control system. The yarn tension sensor measures the tension. Its output is analyzed in the automatic controlling unit. This unit adjusts the tension level according to feedback signals, thus ...

متن کامل

Ultrastretchable Strain Sensors Using Carbon Black-Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors

DOI: 10.1002/admt.201700284 system.[11] Researchers have developed highly stretchable strain sensors made of compliant elastomers and various conductive materials, such as silver nanowire,[12] carbon nanotube (CNT),[13–18] carbon grease,[19] graphene,[20] graphite,[21] laser-carbonized polyimide,[22] conductive acrylic elastomer,[10] liquid metal,[23,24] ionic liquid,[25–27] and conductive fabr...

متن کامل

Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers.

The facile preparation of high-purity carbon nanofibers (CNFs) remains challenging due to the high complexity and low controllability in reaction. A novel approach using gas-induced formation of Cu crystals to control the growth of CNFs is developed in this study. By adjusting the atmospheric composition, controllable preparation of Cu nanoparticles (NPs) with specific size and shape is achieve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS Nano

سال: 2020

ISSN: 1936-0851,1936-086X

DOI: 10.1021/acsnano.9b09533